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Abstract

Spaces of differential forms over configuration spaces with Poisson measures are constructed.
The corresponding Laplacians (of Bochner and de Rham type) on forms and associated semigroups
are considered. Their probabilistic interpretation is given. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Stochastic differential geometry of infinite-dimensional manifolds has been a very active
topic of research in recent times. One of the important and intriguing problems discussed
concerns the construction of spaces of differential forms over such manifolds and the study
of the corresponding Laplace operators and associated (stochastic) cohomologies. A central
role in this framework is played by the concept of the Dirichlet operator of a differentiable
measure, which is actually an infinite-dimensional generalization of the Laplace–Beltrami
operator on functions, respectively, the Laplace–Witten–de Rham operator on differential
forms. The study of the latter operator and the associated semigroup on finite-dimensional
manifolds was the subject of many works, and it leads to deep results on the interface
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of stochastic analysis, differential geometry and topology, and mathematical physics (see,
e.g., [16,17,20,21,35]). Dirichlet forms and processes in connection with noncommutative
C∗-algebras were considered in, e.g. [4,18,23].

The interest in the infinite-dimensional case is motivated by relations with supersymmet-
ric quantum field theory. de Rham type operators acting on differential forms over Hilbert
spaces were considered in [5,11–13]. In this relation, the mostly discussed example of an
infinite-dimensional nonflat space is the loop space of a compact manifold (see [25,27,37]).
Another important example given by the infinite product of compact manifolds was dis-
cussed in [1,2,14].

At the same time, there is a growing interest in geometry and analysis on Poisson spaces,
i.e., on spaces of locally finite configurations in noncompact manifolds equipped with the
Poisson measure. In [6–8], an approach to these spaces as to infinite-dimensional manifolds
was initiated. This approach is motivated by the connection of such spaces with the theory of
representations of diffeomorphism groups, see [22,24,36] (these references and [8,10] also
contain discussion of relations with quantum physics). In fact, the configuration space, which
does not possess the structure of a smooth manifold in the proper sense, can be equipped
with some “Riemannian-like” structure generated by the action of the diffeomorphism group
of the initial manifold. We refer the reader to [9,10,33], and references therein for further
discussion of analysis on Poisson spaces and applications.

In the present work, we develop this point of view. We define spaces of differential
forms over Poisson spaces and study Laplace operators acting in these spaces. We show,
in particular, that the corresponding de Rham Laplacian can be expressed in terms of the
Dirichlet operator on functions on the Poisson space and the Witten Laplacian on the initial
manifold associated with the intensity of the corresponding Poisson measure. We give a
probabilistic interpretation and investigate some properties of the associated semigroups.
The main general aim of our approach is to develop a framework which extends to Poisson
spaces (as infinite-dimensional manifolds), the finite-dimensional Hodge–de Rham theory.

The results of the present paper in the special case of 1-forms were presented in [3]. A
different approach to the construction of differential forms and related objects over Poisson
spaces, based on the “transfer principle” from Wiener spaces, is proposed in [30] (see also
[28] and [29]).

2. Differential forms over configuration spaces

The aim of this section is to define differential forms over configuration spaces (as
infinite-dimensional manifold). First, we recall some known facts and definitions concern-
ing “manifold-like” structures and functional calculus on these spaces.

2.1. Functional calculus on configuration spaces

Our presentation in this section is based upon [8], however, for later use in the present
paper we give a different description of some objects and results occurring in [8].
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Let X be a complete, connected, oriented,C∞ (noncompact) Riemannian manifold of
dimensiond. We denote by〈•, •〉x the corresponding inner product in the tangent space
TxX to X at a pointx ∈ X. The associated norm will be denoted by| • |x . Let also∇X

stand for the gradient onX.
The configuration spaceΓX overX is defined as the set of all locally finite subsets

(configurations) inX:

ΓX := {γ ⊂ X| |γ ∩Λ| < ∞ for each compactΛ ⊂ X}.
Here,|A| denotes the cardinality of the setA.

We can identify anyγ ∈ ΓX with the positive integer-valued Radon measure∑
x∈γ

εx ∈M(X),

whereεx is the Dirac measure with mass atx,
∑
x∈∅εx := zero measure, andM(X)

denotes the set of all positive Radon measures on the Borelσ -algebraB(X). The space
ΓX is endowed with the relative topology as a subset of the spaceM(X) with the vague
topology, i.e., the weakest topology onΓX such that all maps

ΓX 3 γ 7→ 〈f, γ 〉 :=
∫
X

f (x)γ (dx) ≡
∑
x∈γ

f (x)

are continuous. Here,f ∈ C0(X) (:= the set of all continuous functions onX with compact
support). LetB(ΓX) denote the corresponding Borelσ -algebra.

Following [8], we define the tangent space toΓX at a pointγ as the Hilbert space

Tγ ΓX := L2(X → TX; dγ ),

or equivalently

Tγ ΓX = ⊕
x∈γ
TxX. (2.1)

(Compare also with [36, Appendix 3].) The scalar product and the norm inTγ ΓX will
be denoted by〈•, •〉γ and‖ • ‖γ , respectively. Thus, eachV (γ ) ∈ Tγ ΓX has the form
V (γ ) = (V (γ )x)x∈γ , whereV (γ )x ∈ TxX, and

‖V (γ )‖2
γ =

∑
x∈γ

|V (γ )x |2x.

Let γ ∈ ΓX andx ∈ γ . By Oγ,x , we will denote an arbitrary open neighborhood of
x in X such that the intersection of the closure ofOγ,x in X with γ \ {x} is the empty
set. For any fixed finite subconfiguration{x1, . . . , xk} ⊂ γ , we will always consider open
neighborhoodsOγ,x1, . . . ,Oγ,xk with disjoint closures.

Now, for a measurable functionF : ΓX → R, γ ∈ ΓX, and{x1, . . . , xk} ⊂ γ , we define
a functionFx1,...,xk (γ, •) : Oγ,x1 × · · · ×Oγ,xk → R by

Oγ,x1 × · · · ×Oγ,xk 3 (y1, . . . , yk) 7→ Fx1,...,xk (γ, y1, . . . , yk)

:= F((γ \ {x1, . . . , xk}) ∪ {y1, . . . , yk}) ∈ R.



18 S. Albeverio et al. / Journal of Geometry and Physics 37 (2001) 15–46

Since we will be interested only in the local behavior of the functionFx1,...,xk (γ, •) around
the point (x1, . . . , xk), we will not write explicitly which neighborhoodsOγ,xi we
use.

Definition 2.1. We say that a functionF : ΓX → R is differentiable atγ ∈ ΓX if for each
x ∈ γ the functionFx(γ, •) is differentiable atx and

∇Γ F (γ ) = (∇Γ F (γ )x)x∈γ ∈ Tγ ΓX,

where

∇Γ F (γ )x := ∇XFx(γ, x).

We will call ∇Γ F (γ ) thegradientof F atγ .
For a functionF differentiable atγ and a vectorV (γ ) ∈ Tγ ΓX, thedirectional derivative

of F at the pointγ alongV (γ ) is defined by

∇Γ
V F (γ ) := 〈∇Γ F (γ ), V (γ )〉γ .

In what follows, we will also use the shorthand notation

∇X
x F (γ ) := ∇XFx(γ, x), (2.2)

so that

∇Γ F (γ ) = (∇X
x F (γ ))x∈γ .

It is easy to see that the operation∇Γ satisfies the usual properties of differentiation,
including the Leibniz rule. We define a classFC of smooth cylinder functions onΓX as
follows.

Definition 2.2. A measurable bounded functionF : ΓX → R belongs toFC iff:
1. there exists a compactΛ ⊂ X such thatF(γ ) = F(γΛ) for all γ ∈ ΓX, whereγΛ :=
γ ∩Λ;

2. for anyγ ∈ ΓX and{x1, . . . , xk} ⊂ γ , k ∈ N, the functionFx1,...,xk (γ, •) is infinitely
differentiable with partial derivatives uniformly bounded inγ andx1, . . . , xk (i.e., the
majorizing constant depends only on the order of differentiation but not on the specific
choice ofγ ∈ ΓX, k ∈ N, and{x1, . . . , xk} ⊂ γ ).

Let us note that, forF ∈ FC, only a finite number of coordinates of∇Γ F (γ ) are not
equal to zero, and so∇Γ F (γ ) ∈ Tγ ΓX. Thus, eachF ∈ FC is differentiable at any point
γ ∈ ΓX in the sense of Definition 2.1.

Remark 2.1. In [8], the authors introduced the classFC∞
b (D, ΓX) of functions onΓX of

the form

F(γ ) = gF (〈ϕ1, γ 〉, . . . , 〈ϕN, γ 〉), (2.3)
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wheregF ∈ C∞
b (R

N) andϕ1, . . . , ϕN ∈ D := C∞
0 (X) (:= the set of allC∞-functions on

X with compact support). Evidently, we have the inclusion

FC∞
b (D, ΓX) ⊂ FC,

and moreover, the gradient of F of the form(2.3) in the sense of Definition2.1,

∇Γ F (γ )x =
N∑
i=1

∂gF

∂si
(〈ϕ1, γ 〉, . . . , 〈ϕN, γ 〉)∇Xϕi(x),

coincides with the gradient of this function in the sense of[8].

2.2. Tensor bundles and cylinder forms over configuration spaces

Our next aim is to introduce differential forms onΓX. Vector fields and first-order dif-
ferential forms onΓX will be identified with sections of the bundleT ΓX. Higher order
differential forms will be identified with sections of tensor bundles∧n(T ΓX) with fibers

∧n(Tγ ΓX) := ∧n(L2(X → TX; γ )),
where∧n(H) (orH∧n) stands for thenth antisymmetric tensor power of a Hilbert space
H. In what follows, we will use different representations of this space. Because of (2.1),
we have

∧n(Tγ ΓX) = ∧n
(

⊕
x∈γ
TxX

)
. (2.4)

Let us introduce the factor spaceXn/Sn, whereSn is the permutation group of{1, . . . , n}
which naturally acts onXn:

σ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)), σ ∈ Sn.
The spaceXn/Sn consists of equivalence classes [x1, . . . , xn] and we will denote by
[x1, . . . , xn]d an equivalence class [x1, . . . , xn] such that the equalityxi1 = xi2 = · · · = xik
can hold only fork ≤ d points. (In other words, any equivalence class [x1, . . . , xn] is a
multiple configuration inX, while [x1, . . . , xn]d is a multiple configuration with multiplic-
ity of points≤ d.) In what follows, instead of writing [x1, . . . , xn]d : {x1, . . . , xn} ⊂ γ , we
will use the shortened notation [x1, . . . , xn]d ⊂ γ , though [x1, . . . , xn]d is not, of course,
a set. We then have from (2.4),

∧n(Tγ ΓX) = ⊕
[x1,...,xn]d⊂γ

Tx1X ∧ Tx2X ∧ · · · ∧ TxnX. (2.5)

Here, the spaceTx1X ∧ Tx2X ∧ · · · ∧ TxnX is understood as a subspace of the Hilbert
space(Ty1X ⊕ Ty2X ⊕ · · · ⊕ TykX)

⊗n, where{y1, . . . , yk} is the set of the differentxj ’s,
j = 1, . . . , n. To see that (2.5) holds, notice that

(Ty1X ⊕ Ty2X ⊕ · · · ⊕ TykX)
⊗n ' (Tyν(1)X ⊕ Tyν(2)X ⊕ · · · ⊕ Tyν(k)X)

⊗n,
ν ∈ Sk, (2.6)
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where “'” means isomorphism, and moreoverTx1X ∧ Tx2X ∧ · · · ∧ TxnX andTxσ (1)X ∧
Txσ (2)X ∧ · · · ∧ Txσ (n)X, σ ∈ Sn, coincide as subspaces of the space (2.6).

Thus, under a differential formW of ordern, n ∈ N, overΓX, we will understand a
mapping

ΓX 3 γ 7→ W(γ ) ∈ ∧n(Tγ ΓX). (2.7)

We denote byW(γ )[x1,...,xn]d the corresponding component ofW(γ ) in the decomposition
(2.5).

In particular, in the casen = 1, a 1-formV overΓX is given by the mapping

ΓX 3 γ 7→ V (γ ) = (V (γ )x)x∈γ ∈ Tγ ΓX.
For fixedγ ∈ ΓX andx ∈ γ , we consider the mapping

Oγ,x 3 y 7→ Wx(γ, y) := W(γy) ∈ ∧n(TγyΓX),
whereγy := (γ \ {x}) ∪ {y}, which is a section of the Hilbert bundle

∧n(TγyΓX) 7→ y ∈ Oγ,x (2.8)

overOγ,x . The Levi–Civita connection onTX generates in a natural way a “product” con-
nection on this bundle. We denote by∇X

γ,x the corresponding covariant derivative, and use
the notation

∇X
x W(γ ) := ∇X

γ,x Wx(γ, x) ∈ TxX ⊗ (∧n(Tγ ΓX))
if the sectionWx(γ, •) is differentiable atx. Analogously, we denote by∆Xx the corre-
sponding Bochner Laplacian associated with the volume measurem onOγ,x (see Section
3.2 where the notion of Bochner Laplacian is recalled).

Similarly, for a fixedγ ∈ ΓX and{x1, . . . , xk} ⊂ γ , we define a mapping

Oγ,x1 × · · · ×Oγ,xk 3 (y1, . . . , yk) 7→ Wx1,...,xk (γ, y1, . . . , yk)

:= W(γy1,...,yk ) ∈ ∧n(Tγy1,...,yk ΓX),
whereγy1,...,yk := (γ \{x1, . . . , xk})∪{y1, . . . , yk}, which is a section of the Hilbert bundle

∧n(Tγy1,...,yk ΓX) 7→ (y1, . . . , yk) ∈ Oγ,x1 × · · · ×Oγ,xk (2.9)

overOγ,x1 × · · · ×Oγ,xk .
Let us remark that, for anyη ⊂ γ , the space∧n(TηΓX) can be identified in a natural

way with a subspace of∧n(Tγ ΓX). In this sense, we will use expressions of the type
W(γ ) = W(η) without additional explanations. A setFΩn of smooth cylindern-forms
overΓX will be defined as follows.

Definition 2.3. FΩn is the set ofn-formsW overΓX which satisfy the following condi-
tions:
1. there exists a compactΛ = Λ(W) ⊂ X such thatW(γ ) = W(γΛ);
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2. for eachγ ∈ ΓX and{x1, . . . , xk} ⊂ γ , the sectionWx1,...,xn(γ, •) of the bundle (2.9)
is infinitely differentiable at(x1, . . . , xk), and bounded together with partial derivatives
component-wise in the sense of decomposition (2.5), uniformly inγ , x1, . . . , xk, and
the component.

Remark 2.2. For eachW ∈ FΩn, γ ∈ ΓX, and any open boundedΛ ⊃ Λ(W), we can
define the formWΛ,γ onOγ,x1 × · · · ×Oγ,xk by

WΛ,γ (y1, . . . , yk) = Proj∧n(Ty1X⊕···⊕TykX)W((γ \ {x1, . . . , xk}) ∪ {y1, . . . , yk}),
(2.10)

where{x1, . . . , xk} = γ ∩ Λ. The item(2) of Definition 2.3 is obviously equivalent to
the assumption thatWΛ,γ is smooth and bounded together with all partial derivatives
component-wise uniformly inγ (for someΛ and consequently for anyΛ ⊃ Λ(W)).

Definition 2.4. We define the covariant derivative∇Γ W of a formW given by (2.7) as the
mapping

ΓX 3 γ 7→ ∇Γ W(γ ) := (∇X
x W(γ ))x∈γ ∈ Tγ ΓX ⊗ (∧n(Tγ ΓX))

if for all γ ∈ ΓX andx ∈ γ the formWx(γ, •) is differentiable atx and the∇Γ W(γ ) just
defined indeed belongs toTγ ΓX ⊗ (∧n(Tγ ΓX)).

Remark 2.3. For eachW ∈ FΩn, the covariant derivative∇Γ W exists, and moreover
only a finite number of the coordinates∇Γ W(γ )x,[x1,...,xn]d in the decomposition

Tγ ΓX ⊗ (∧n(Tγ ΓX)) = ⊕
x∈γ, [x1,...,xn]d⊂γ

TxX ⊗ (Tx1X ∧ · · · ∧ TxnX)

are not equal to zero.

Remark 2.4. For eachW ∈ FΩn, γ ∈ ΓX, x ∈ γ , and [x1, . . . , xn]d ⊂ γ , we define the
mappingWx(γ, •)[x1,...,xn]d as follows: ifx 6= xj for all j = 1, . . . , n, then

Oγ,x 3 y 7→ Wx(γ, y)[x1,...,xn]d

:= W((γ \ {x}) ∪ {y})[x1,...,xn]d ∈ Tx1X ∧ · · · ∧ TxnX,
and ifx = xi for somexi ∈ {x1, . . . , xn}, then

Oγ,x 3 y 7→ Wx(γ, y)[x1,...,xn]d

:= W((γ \ {x}) ∪ {y})[y1,...,yn]d ∈ Ty1X ∧ · · · ∧ TynX,
whereyj = xj if x 6= xj and yj = y otherwise. Then, the condition(2) of Definition
2.3 yields, in particular, that the mappingWx(γ, •)[x1,...,xn]d is C∞ for all x ∈ γ and
[x1, . . . , xn]d ⊂ γ . Now, we have

∇Γ W(γ )x, [x1,...,xn]d = ∇X
x W(γ )[x1,...,xn]d ,
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where

∇X
x W(γ )[x1,...,xn]d := ∇XWx(γ, x)[x1,...,xn]d .

Notice that, in the case wherex 6= xj for all j = 1, . . . , n, ∇XWx(γ, •)[x1,...,xn]d means, in
fact, the usual derivative of a mapping defined onOγ,x and taking values in the fixed vector
spaceTx1X∧· · ·∧TxnX. On the other hand, if x does coincide with somexi ∈ {x1, . . . , xn},
then the expression∇XWx(γ, x)[x1,...,xn]d can be understood as theTxX ⊗ (Tx1X ∧ · · · ∧
TxnX)-coordinate of the covariant derivative of the n-form

Oγ,y1 × · · · ×Oγ,yk 3 (z1, . . . , zk)

7→ Proj∧n(Tz1X⊕···⊕TzkX)W((γ \ {y1, . . . , yk}) ∪ {z1, . . . , zk}) (2.11)

at the point(y1, . . . , yk), where{y1, . . . , yk} is the set of all the differentxj ’s, j = 1, . . . , n.
In fact, the last sentence was just an alternative description of the notion of covariant
derivative∇XWx(γ, x)[x1,...,xn]d of the mappingWx(γ, •)[x1,...,xn]d in the case where x
coincides with somexi .

Proposition 2.1. For arbitrary W(1),W(2) ∈ FΩn, we have

∇Γ 〈W(1)(γ ),W(2)(γ )〉∧n(Tγ ΓX) = 〈∇Γ W(1)(γ ),W(2)(γ )〉∧n(Tγ ΓX)
+〈W(1)(γ ),∇Γ W(2)(γ )〉∧n(Tγ ΓX).

Proof. We have, for any fixedγ ∈ ΓX,

∇Γ 〈W(1)(γ ),W(2)(γ )〉∧n(Tγ ΓX) =
∑
x∈γ

∇X
x 〈W(1)(γ ),W(2)(γ )〉∧n(Tγ ΓX)

=
∑
x∈γ

∇X
x

∑
[x1,...,xn]d⊂γ

〈W(1)(γ )[x1,...,xn]d ,W
(2)(γ )[x1,...,xn]d 〉Tx1X∧···∧TxnX

=
∑
x∈γ

∑
[x1,...,xn]d⊂γ

∇X
x 〈W(1)(γ )[x1,...,xn]d ,W

(2)(γ )[x1,...,xn]d 〉Tx1X∧···∧TxnX

=
∑
x∈γ

∑
[x1,...,xn]d⊂γ

[〈∇X
x W

(1)(γ )[x1,...,xn]d ,W
(2)
[x1,...,xn]d

〉Tx1X∧···∧TxnX

+〈W(1)(γ )[x1,...,xn]d ,∇X
x W

(2)(γ )[x1,...,xn]d 〉Tx1X∧···∧TxnX]

= 〈∇Γ W(1)(γ ),W(2)(γ )〉∧n(Tγ ΓX) + 〈W(1)(γ ),∇Γ W(2)(γ )〉∧n(Tγ ΓX).
All the sums above are actually finite because of the definition ofFΩn. �

2.3. Square-integrablen-forms

Our next goal is to give a description of the space ofn-forms that are square-integrable
with respect to the Poisson measure.

Letm be the volume measure onX, let ρ : X → R be a measurable function such that
ρ > 0m-a.e., andρ1/2 ∈ H

1,2
loc (X), and define the measureσ(dx) := ρ(x)m(dx). Here,
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H
1,2
loc (X) denotes the local Sobolev space of order 1 inL2

loc(X;m). Then,σ is a nonatomic
Radon measure onX.

Let πσ stand for the Poisson measure onΓX with intensityσ . This measure is characte-
rized by its Laplace transform∫

ΓX

e〈f,γ 〉πσ (dγ ) = exp
∫
X

(ef (x) − 1)σ (dx), f ∈ D.

Let F ∈ L1(ΓX;πσ ) be cylindrical, i.e., there exits a compactΛ ⊂ X such thatF(γ ) =
F(γΛ). Then, one has the following formula, which we will use many times:

∫
ΓX

F (γ )πσ (dγ ) = e−σ(Λ)
∞∑
n=0

1

n!

∫
Λn
F ({x1, . . . , xn})σ (dx1) · · · σ(dxn). (2.12)

We define on the setFΩn theL2-scalar product with respect to the Poisson measure

(W(1),W(2))L2
πσ
Ωn :=

∫
ΓX

〈W(1)(γ ),W(2)(γ )〉∧nTγ ΓX πσ (dγ ). (2.13)

As easily seen, for eachW ∈ FΩn, there existsϕ ∈ D, ϕ ≥ 0, such that

|〈W(γ ),W(γ )〉∧nTγ ΓX | ≤ 〈ϕ⊗n, γ⊗n〉.
Hence, the function under the sign of integral in (2.13) indeed belongs toL1(ΓX;πσ ),
since the Poisson measure has all moments finite. Moreover,(W,W)L2

πσ
Ωn > 0 if W is not

identically zero. Hence, we can define the Hilbert space

L2
πσ
Ωn := L2(ΓX → ∧n(T ΓX);πσ )

as the closure ofFΩn in the norm generated by the scalar product (2.13).
We will give now an isomorphic description of the spaceL2

πσ
Ωn via the spaceL2

πσ
(ΓX) :=

L2(ΓX → R;πσ ) and some special spaces of square-integrable forms onXm,
m = 1, . . . , n.

We need first some preparations. LetXm be themth Cartesian power of the manifoldX.
We have

∧n(T(x1,...,xm)X
m) = ⊕

0≤k1,...,km≤d
k1+···+km=n

(Tx1X)
∧k1 ∧ · · · ∧ (TxmX)∧km. (2.14)

For ann-formω onXm, we denote byω(x1, . . . , xm)k1,...,km the corresponding component
of ω(x1, . . . , xm) in the decomposition (2.14).

Let

X̃m := {x̄ = (x1, . . . , xm) ∈ Xm|xi 6= xj if i 6= j}.
We introduce a setΨ n

0 (X̃
m) (resp.Ψ n

0 (X
m)) of boundedn-formsω overXm which have

compact support, smooth oñXm (resp. onXm), and satisfy the following assumptions:
1. ω(x1, . . . , xm)k1,...,km = 0 if kj = 0 for somej ∈ {1, . . . , m};
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2. ω is symmetric:

ω(x1, . . . , xm) = ω(xσ(1), . . . , xσ(m)) for eachσ ∈ Sm (2.15)

(we identify the spaces∧n(T(x1,...,xm)X
m) and∧n(T(xσ(1),...,xσ(m))Xm) see (2.14) and the

explanation just after formula (2.5)).
Evidently,Ψ n

0 (X
m) ⊂ Ψ n

0 (X̃
m). Let : γ⊗m : be the measure onXm given by

: γ⊗m : (dx1, . . . ,dxm) :=
∑

{y1,...,ym}⊂γ
εy1⊗̂ · · · ⊗̂εym(dx1, . . . ,dxm),

where

εy1⊗̂ · · · ⊗̂εym(dx1, . . . ,dxm) := 1

m!

∑
σ∈Sm

εyσ(1) ⊗ · · · ⊗ εyσ(m)(dx1, . . . ,dxm).

We will use the notation

T
(n)
{x1,...,xm}X

m := ⊕
1≤k1,...,km≤d
k1+···+km=n

(Tx1X)
∧k1 ∧ · · · ∧ (TxmX)∧km. (2.16)

By virtue of (2.5), we have

∧n(Tγ ΓX) = n⊕
m=1

⊕
{x1,...,xm}⊂γ

T
(n)
{x1,...,xm}X

m. (2.17)

For W ∈ FΩn, we denote byWm(γ ) ∈ ⊕{x1,...,xm}⊂γT(n){x1,...,xm}X
m the corresponding

component ofW(γ ) in the decomposition (2.17). Thus, for{x1, . . . , xm} ⊂ γ ,Wm(γ )(x1,

. . . , xm) is equal to the projection ofW(γ ) ∈ ∧n(Tγ ΓX) onto the subspaceT(n){x1,...,xm}X
m.

For x̄ = (x1, . . . , xm) ∈ X̃m we set{x̄} := {x1, . . . , xm}.

Lemma 2.1. For W,V ∈ FΩn, we have

(W(γ ), V (γ ))∧n(Tγ ΓX) =
∑

m=1,...,n

∫
Xm
(Wm(γ )(x̄), Vm(γ )(x̄))

T
(n)
{x̄}Xm

: γ⊗m : (dx̄).

(2.18)

The proof can be obtained by a direct calculation.
Let us remark that eachω ∈ Ψ n

0 (X
m) generates a cylinder formW ∈ FΩn by the

formula

Wk(γ )(x1, . . . , xk) =
{
ω(x1, . . . , xm), k = m,

0, k 6= m.

Let us denote byL2
σΨ

n
0 (X

m) the space obtained as the completion ofΨ n
0 (X

m) in the
L2-scalar product with respect to the measureσ⊗m. Evidently,Ψ n

0 (X̃
m) is a dense subset

of L2
σΨ

n
0 (X

m). We have the following proposition.
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Proposition 2.2. The spaceL2
πσ
Ωn is unitarily isomorphic to the space

L2
πσ
(ΓX)⊗

[
n⊕

m=1
L2
σΨ

n(Xm)

]
= n⊕
m=1

L2
πσ
(ΓX)⊗ L2

σΨ
n(Xm), (2.19)

where the corresponding isomorphismIn is defined by the formula

InmW(γ, x̄) := (m!)−1/2Wm(γ ∪ {x̄})(x̄), m = 1, . . . , n. (2.20)

Here, InmW := (InW)m is the mth component ofInV in the decomposition(2.19).

Remark 2.5. Actually, the formula(2.20)makes sense only forx̄ ∈ X̃m. However, since
the setXm \ X̃m is of zeroσ⊗m measure, this does not lead to a contradiction.

Proof. First, we recall an extension of the Mecke identity (e.q. [26]) to the case of functions
of several variables [31]:∫

ΓX

[∫
Xm
f (γ, x̄) : γ⊗m : (dx̄)

]
πσ (dγ )

= (m!)−1
∫
ΓX

[∫
Xm
f (γ ∪ {x̄}, x̄)σ⊗m(dx̄)

]
πσ (dγ ), (2.21)

where f : ΓX × Xm → R is a measurable function for which at least one of the
double-integrals in (2.21) exists (this formula can be easily proved by a direct calcula-
tion using (2.12) forf (γ, x̄) = F(γ )g(x̄), whereF(γ ) is bounded and cylindrical and
g(x̄) is bounded and has compact support).

Next, let us specify the scalar product of two cylindern-formsW,V ∈ FΩn. We have,
according to (2.18),

(W(γ ), V (γ ))∧n(Tγ ΓX) =
n∑

m=1

∫
Xm
(Wm(γ )(x̄), Vm(γ )(x̄))x̄ : γ⊗m : (dx̄)

=
n∑

m=1

∫
Xm
(Wm(γ ∪ {x̄})(x̄), Vm(γ ∪ {x̄})(x̄))x̄ : γ⊗m : (dx̄), (2.22)

where(•, •)x̄ := (•, •)
T
(n)
{x̄}Xm

(we used the evident equalityγ ∪ {x̄} = γ for {x̄} ⊂ γ ). The

application of the Mecke identity (2.21) to the function

f (γ, x̄) = (Wm(γ ∪ {x̄})(x̄), Vm(γ ∪ {x̄})(x̄))x̄
shows that

(W, V )L2
πσ
Ωn

=
n∑

m=1

(m!)−1
∫
ΓX

∫
Xm
(Wm(γ ∪ {x̄})(x̄), Vm(γ ∪ {x̄})(x̄))x̄σ⊗m(dx̄)πσ (dγ ).
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The spaceFΩn is dense inL2
πσ
Ωn, and so it remains only to show thatIn(FΩn) is a

dense subspace of⊕n
m=1L

2
πσ
(ΓX) ⊗ L2

σΨ
n(Xm), i.e., Inm(FΩ

n) is a dense subspace of
L2
πσ
(ΓX)⊗ L2

σΨ
n(Xm),m = 1, . . . , n.

ForF ∈ FC andω ∈ Ψ n
0 (X

m), we define a formW by setting

Wk(γ ) := 0 for k 6= m, Wm(γ )(x̄) := (m!)1/2F(γ \ {x̄})ω(x̄). (2.23)

Evidently, we haveW ∈ FΩn and

Ink W(γ, x̄) = 0 for k 6= m, InmW(γ, x̄) = F(γ )ω(x̄) (2.24)

for eachγ ∈ ΓX andx̄ ∈ X̃m such that{x̄} ∩ γ = ∅. Sinceγ is a set of zeroσ measure,
we conclude from (2.24) that

InmW = F ⊗ ω.

Noting that the linear span of suchF ⊗ ω is dense inL2
πσ
(ΓX) ⊗ L2

σΨ
n(Xm), we obtain

the result. �

In what follows, we will denote byDΩn the linear span of formsW defined by (2.23),
m = 1, . . . , n. As we already noticed in the proof of Proposition 2.2,DΩn is a subset of
FΩn and is dense inL2

πσ
Ωn.

Corollary 2.1. We have the unitary isomorphism

In : L2
πσ
Ωn → Exp(L2(X; σ))⊗

[
n⊕

m=1
L2
σΨ

n(Xm)

]

given by

In := (U ⊗ 1)In,

where U is the Wiener–Itô–Segal isomorphism between the Poisson spaceL2
πσ
(ΓX) and the

symmetric Fock spaceExp(L2(X; σ)) overL2(X; σ) (see, e.g.,[8]).

3. Dirichlet operators on differential forms over configuration spaces

In this section, we introduce Dirichlet operators associated with the Poisson measure
onΓX which act in the spaces of square-integrable forms. These operators generalize the
notions of Bochner and de Rham–Witten Laplacians on finite-dimensional manifolds. But
first, we recall some known facts and definitions concerning the usual Dirichlet operator
of the Poisson measure and Laplace operators on differential forms over finite-dimensional
manifolds.

3.1. The intrinsic Dirichlet operator on functions

In this section, we recall some theorems from [8] which concern the intrinsic Dirichlet
operator in the spaceL2

πσ
(ΓX), to be used later.
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Let us recall that the logarithmic derivative of the measureσ is given by the vector field

X 3 x 7→ βσ (x) := ∇Xρ(x)

ρ(x)
∈ TxX

(where as usualβσ := 0 on {ρ = 0}). We wish now to define a logarithmic derivative of
the Poisson measure, and for this we need a generalization of the notion of vector field.

For eachγ ∈ ΓX, consider the triple

Tγ,∞ΓX ⊃ Tγ ΓX ⊃ Tγ,0ΓX.

Here,Tγ,0ΓX consists of all finite sequences fromTγ ΓX, andTγ,∞ΓX := (Tγ,0ΓX)
′ is the

dual space, which consists of all sequencesV (γ ) = (V (γ )x)x∈γ , whereV (γ )x ∈ TxX.
The pairing between anyV (γ ) ∈ Tγ,∞ΓX andv(γ ) ∈ Tγ,0ΓX with respect to the zero
spaceTγ Γx is given by

〈V (γ ), v(γ )〉γ =
∑
x∈γ

〈V (γ )x, v(γ )x〉x

(the series is, in fact, finite). From now on, under a vector field overΓX we will understand
mappings of the formΓX 3 γ 7→ V (γ ) ∈ Tγ,∞ΓX.

The logarithmic derivative of the Poisson measureπσ is defined as the vector field

ΓX 3 γ 7→ Bπσ (γ ) = (βσ (x))x∈γ ∈ Tγ,∞ΓX (3.1)

(i.e., the logarithmic derivative of the Poisson measure is the lifting of the logarithmic
derivative of the underlying measure).

The following theorem is a version of Theorem 3.1 in [8] (for more general classes of
functions and vector fields).

Theorem 3.1(Integration by parts formula on the Poisson space).For arbitraryF (1), F (2) ∈
FC and a smooth cylinder vector fieldV ∈ FV(:= FΩ1), we have∫

ΓX

∇Γ
V F

(1)(γ )F (2)(γ )πσ (dγ ) = −
∫
ΓX

F (1)(γ )∇Γ
V F

(2)(γ )πσ (dγ )

−
∫
ΓX

F (1)(γ )F (2)(γ )[〈Bπσ (γ ), V (γ )〉γ + divΓ V (γ )]πσ (dγ ),

where the divergencedivΓ V (γ ) of the vector field V is given by

divV (γ )=
∑
x∈γ

divXx V (γ )=〈divX• V (γ ), γ 〉, divXx V (γ ) := divXVx(γ, x), x ∈ γ

with divX denoting the divergence on X with respect to the volume measure m.

Proof. The theorem follows from formula (2.12) and the usual integration by parts formula
on the spaceL2(Λn, σ⊗n) (see also the proof of Theorem 3.3). �
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Following [8], we consider the intrinsic pre-Dirichlet form on the Poisson space

Eπσ (F
(1), F (2)) =

∫
ΓX

〈∇Γ F (1)(γ ),∇Γ F (2)(γ )〉γ πσ (dγ ) (3.2)

with domainD(Eπσ ) := FC. By using the fact that the measureπσ has all moments finite
and noting that there exists a functionϕ ∈ D, ϕ ≥ 0, such that

|〈∇Γ F (1)(γ ),∇Γ F (2)(γ )〉γ | ≤ 〈ϕ, γ 〉,
one concludes that the expression (3.2) is well defined.

LetHσ denote the Dirichlet operator in the spaceL2(X; σ) associated to the pre-Dirichlet
form

Eσ (ϕ, ψ) =
∫
X

〈∇Xϕ(x),∇Xψ(x)〉xσ (dx), ϕ, ψ ∈ D.

This operator acts as follows:

Hσϕ(x) = −∆Xϕ(x)− 〈βσ (x),∇Xϕ(x)〉x, ϕ ∈ D,
where∆X := divX∇X is the Laplace–Beltrami operator onX.

Then, by using Theorem 3.1, one gets

Eπσ (F
(1), F (2)) =

∫
ΓX

Hπσ F
(1)(γ )F (2)(γ )πσ (dγ ), F (1), F (2) ∈ FC. (3.3)

Here, the intrinsic Dirichlet operatorHπσ is given by

Hπσ F (γ ) :=
∑
x∈γ

Hσ,xF (γ ) ≡ 〈Hσ,•F(γ ), γ 〉,

Hσ,xF (γ ) := HσFx(γ, x), x ∈ γ, (3.4)

so that the operatorHπσ is the lifting toL2
πσ
(ΓX) of the operatorHσ in L2(X; σ).

Upon (3.3), the pre-Dirichlet formEπσ is closable, and we preserve the notation for the
closure of this form.

Theorem 3.2(Albeverio, Kondrative and Röckner [8]).Suppose that(Hσ ,D) is essentially
self-adjoint onL2(X; σ). Then, the operatorHπσ is essentially self-adjoint onFC.

Remark 3.1. This theorem was proved in[8, Theorem5.3]. (We have already mentioned
in Remark2.1 that the inclusionFC∞

b (D, ΓX) ⊂ FC holds.) We would like to stress that
this result is based upon the theorem which says that the image of the operatorHπσ under
the isomorphism U between the Poisson space and the Fock spaceExp(L2(X; σ)) is the
differential second quantizationd ExpHσ of the operatorHσ .

Remark 3.2. The condition of Theorem3.2 is satisfied if, e.g.,

‖βσ‖TX ∈ Lploc(X; σ) (3.5)

for somep > dimX (see[8]).
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In what follows, we will suppose for simplicity that

the functionρ is infinitely differentiable onX andρ(x) > 0 for allx ∈ X. (3.6)

Evidently, estimate (3.5) is implied by (3.6).
Finally, we mention the important fact [8] that the diffusion process which is properly

associated with the Dirichlet form(Eπσ ,D(Eπσ )) is the usual independent infinite particle
process (or distorted Brownian motion onΓX), introduced by Doob [19].

3.2. Laplacians on differential forms over finite-dimensional manifolds

We recall now some facts on the Bochner and de Rham–Witten Laplacians on differential
forms over a finite-dimensional manifold.

LetM be a Riemannian manifold equipped with the measureµ(dx) = eφ(x) dx, dx being
the volume measure andφ aC2-function onM. We consider a Hilbert bundle

Hx 7→ x ∈ M
overM equipped with a smooth connection, and denote by∇ the corresponding covariant
derivative in the spaces of sections of this bundle. LetL2(M → H;µ) be the space of
µ-square integrable sections. The operator

HB
µ := ∇∗

µ∇
in L2(M → H;µ), where∇∗

µ is the adjoint of∇, will be called the Bochner Laplacian as-
sociated with the measureµ. One can easily write the corresponding differential expression
on the space of twice differentiable sections. In the case whereφ ≡ 0 andHx = ∧n(TxM),
we obtain the classical Bochner Laplacian on differential forms (see, e.g., [17]).

Now, letd be the exterior differential in spaces of differential forms overM. The operator

HR
µ := d∗

µd + dd∗
µ

acting in the space ofµ-square integrable forms, whered∗
µ is the adjoint ofd, will be called

the de Rham Laplacian associated with the measureµ (or the Witten Laplacian associated
with φ; see, e.g., [17]).

We will use sometimes more extended notationsHB
µ,n(M),H

R
µ,n(M) for the Bochner

and de Rham–Witten Laplacians on the space ofµ-square integrablen-forms overM.
The relation of the Bochner and de Rham–Witten Laplacians on differential forms is

given by the Weitzenböck formula (cf. [17,20]), which will be recalled now.
Fix x ∈ M and let(ej )dimM

j=1 be an orthonormal basis inTxM. Denote by

aj : ∧n+1(TxM) → ∧n(TxM), a∗
j : ∧n(TxM) → ∧n+1(TxM), (3.7)

the annihilation and creation operators, respectively, defined by

aju
(n+1) = (n+ 1)1/2〈ej , u(n+1)〉x, u(n+1) ∈ ∧n+1(TxM),

a∗
j u
(n) = (n+ 1)1/2ej ∧ u(n), u(n) ∈ ∧n(TxM). (3.8)
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The pairing in the expression〈ej , u(n+1)〉x is carried out in the first “variable”, so thata∗
j

becomes the adjoint ofaj .
Let us introduce the operatorRn(x) in ∧n(TxM) by

Rn(x) :=
dimM∑
i,j,k,l=1

Rijkl (x)a
∗
i aj a

∗
k al,

whereRijkl is the curvature tensor onM. It can be shown that the definition of this operator
is independent of the specific choice of basis.

Next, let(∇Mβµ(x))
∧n be the operator in∧n(TxM) given by

(∇Mβµ(x))
∧n := ∇Mβµ(x)⊗ 1 · · · ⊗ 1 + 1 ⊗ ∇Mβµ(x)⊗ 1 ⊗ · · · ⊗ 1

+ · · · + 1 ⊗ · · · ⊗ 1 ⊗ ∇Mβµ(x), (3.9)

∇Mβµ(x) being understood as an operator inTxM.
Then, the Weitzenböck formula writes as follows:

HR
µ ωn(x) = HB

µωn(x)+ Rµ(x)ωn(x), (3.10)

whereωn is ann-form onX, andRµ(x)ωn(x) = Rµ,n(x)ωn(x),

Rµ,n(x) := Rn(x)− (∇Mβµ(x))
∧n. (3.11)

Remark 3.3. The classical Weitzenböck formula is related, in fact, to the case whereφ ≡ 0
(see, e.g.,[17,20]). Formula (3.10)can be obtained by a direct calculation using similar
arguments, cf. [1].

3.3. Bochner Laplacian on forms over the configuration space

Let us consider the pre-Dirichlet form

EB
πσ
(W(1),W(2)) =

∫
ΓX

〈∇Γ W(1)(γ ),∇Γ W(2)(γ )〉Tγ ΓX⊗∧n(Tγ ΓX)πσ (dγ ), (3.12)

whereW(1),W(2) ∈ FΩn. As easily seen, there existsϕ ∈ D, ϕ ≥ 0, such that

|〈∇Γ W(1)(γ ),∇Γ W(2)(γ )〉Tγ ΓX⊗∧n(Tγ ΓX)| ≤ 〈ϕ⊗(n+1), γ⊗(n+1)〉,
so that the function under the sign of integral in (3.12) is integrable with respect toπσ .

Theorem 3.3. For anyW(1),W(2) ∈ FΩn, we have

EB
πσ
(W(1),W(2)) =

∫
ΓX

〈HB
πσ
W(1)(γ ),W(2)(γ )〉∧n(Tγ ΓX)πσ (dγ ),

whereHB
πσ

is the operator in the spaceL2
πσ
Ωn with domainFΩn given by

HB
πσ
W(γ ) = −∆ΓW(γ )− 〈∇Γ W(γ ), Bπσ (γ )〉γ , W ∈ FΩn. (3.13)
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Here,

∆ΓW(γ ) :=
∑
x∈γ

∆Xx W(γ ) ≡ 〈∆Γ• W(γ ), γ 〉, (3.14)

where∆Xx is the Bochner Laplacian of the bundle∧n(TγyΓX) 7→ y ∈ Oγ,x with the volume
measure.

Proof. First, we note that, forW ∈ FΩn,

∆Xx W(γ )[x1,...,xn]d := ∆XWx(γ, x)[x1,...,xn]d , x ∈ γ, [x1, . . . , xn]d ⊂ γ.

Fix nowW(1),W(2) ∈ FΩn and letΛ1,Λ2 be compact subsets ofX as in Definition 2.3
corresponding toW(1),W(2), respectively. LetΛ be an open set inX with compact closure
such that bothΛ1 andΛ2 are subsets ofΛ. Then, by using (2.12),∫

ΓX

〈∇Γ W(1)(γ ),∇Γ W(2)(γ )〉Tγ ΓX⊗∧n(Tγ ΓX)πσ (dγ )

= e−σ(Λ)
∞∑
k=0

1

k!

∫
Λk

k∑
i=1

〈∇X
xi
W(1)({x1, . . . , xk}),

∇X
xi
W(2)({x1, . . . , xk})〉Txi X⊗∧n(Tx1X⊕···⊕TxkX)σ (dx1) · · · σ(dxk)

= e−σ(Λ)
∞∑
k=0

1

k!

k∑
i=1

∫
Λk

∑
[y1,...,yn]d⊂{x1,...,xk}

〈∇X
xi
W(1)({x1, . . . , xk})[y1,...,yn]d ,

∇X
xi
W(2)({x1, . . . , xk})[y1,...,yn]d 〉Txi X⊗(Ty1X∧···∧TynX)σ (dx1) · · · σ(dxk)

= e−σ(Λ)
∞∑
k=0

1

k!

k∑
i=1

∫
Λk

∑
[y1,...,yn]d⊂{x1,...,xk}

〈∆XxiW(1)({x1, . . . , xk})[y1,...,yn]d

+〈∇X
xi
W(1)({x1, . . . , xk})[y1,...,yn]d , βσ (xi)〉xi ,

W(2)({x1, . . . , xk})[y1,...,yn]d 〉Ty1X∧···∧TynXσ(dx1) · · · σ(dxk)

=
∫
ΓX

〈HB
πσ
W(1)(γ ),W(2)(γ )〉∧n(Tγ ΓX)πσ (dγ ). �

Remark 3.4. We can rewrite the action of the operatorHB
πσ

in the two following forms:
1. We have from(3.13)and(3.14)that

HB
πσ
W(γ ) =

∑
x∈γ

HB
σ,xW(γ ) ≡ 〈HB

σ,•W(γ ), γ 〉, W(γ ) ∈ FΩn, (3.15)

where

HB
σ,xW(γ ) := −∆Xx W(γ )− 〈∇X

x W(γ ), βσ (x)〉x. (3.16)

Thus, the operatorHB
πσ

is the lifting of the Bochner Laplacian on X with the measureσ .
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2. As easily seen, the operatorHB
πσ

preserves the spaceFΩn, and we can always take
Λ(HB

πσ
W) = Λ(W). Then, for any open boundedΛ ⊃ Λ(W) (cf. Remark2.2),we have

(HB
πσ
W)Λ,γ = HB

σ⊗|Λ∩γ |(X
|Λ∩γ |)WΛ,γ , (3.17)

whereHB
σ⊗|Λ∩γ |(X

|Λ∩γ |) is the Bochner Laplacian of the manifoldX|Λ∩γ | with the

product measureσ⊗|Λ∩γ | (cf.(2.10)).The equality(3.17)holds onOγ,x1×· · ·×Oγ,x|Λ∩γ | ,
where{x1, . . . , x|Λ∩γ |} = Λ∩ γ . Notice that, since the operatorHB

σ⊗|Λ∩γ |(X
|Λ∩γ |) acts

locally on(smooth) forms onX|Λ∩γ |, the expression on the right-hand side of(3.17)is
well defined as a form onOγ,x1 × · · · ×Oγ,x|Λ∩γ | .

It follows from Theorem 3.3 that the pre-Dirichlet formEB
πσ

is closable in the space
L2
πσ
Ωn. The generator of its closure (being actually the Friedrichs extension of the operator

HB
πσ

, for which we will use the same notation) will be called the Bochner Laplacian on
n-forms overΓX corresponding to the Poisson measureπσ .

For linear operatorsA andB acting in Hilbert spacesH andK, respectively, we introduce
the operatorA�B inH⊗K by

A�B := A⊗ 1 + 1 ⊗ B, Dom(A�B) := Dom(A)⊗a Dom(B),

where⊗a stands for the algebraic tensor product. Next, for operatorsA1, . . . , An acting in
Hilbert spacesH1, . . . ,Hn, respectively, let⊕n

i=1Ai denote the operator in⊕n
i=1Hi given

by (
n⊕
i=1
Ai

)
(f1, . . . , fn) = (A1f1, . . . , Anfn), fi ∈ Dom(Ai).

Theorem 3.4.
1. OnDΩn we have

HB
πσ

= (In)−1
[
Hπσ�

(
n⊕

m=1
HB
σ,(n,m)

)]
In, (3.18)

whereHB
σ,(n,m) denotes the restriction of the Bochner LaplacianHB

σ⊗m,n(X
m) acting in

the spaceL2(Xm → ∧n(TXm); σ⊗m) to the subspaceL2
σΨ

n(Xm).
2. Suppose that, for eachm = 1, . . . , n, the Bochner LaplacianHB

σ,m(X) is essentially
self-adjoint on the set of smooth forms with compact support. Then,DΩn is a domain of
essential self-adjointness ofHB

πσ
, and the equality(3.18)holds for the closed operators

HB
πσ

andHπσ�(⊕n
m=1H

B
σ,(n,m)), where the latter operator is closed from its domain of

essential self-adjointnessIn(DΩn).

Remark 3.5. The essential self-adjointness of the Bochner LaplacianHB
σ on the set of

smooth forms with compact support is well known in the case whereσ is the volume
measure(see, e.g.,[20]). More generally, it is sufficient to assume thatβσ , together with its
derivatives up to order2, is bounded.
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Proof of Theorem 3.4.
1. LetW ∈ DΩn be given by the formula (2.23). Then, using (3.15), (3.16) and (3.4), we

get

(HB
πσ
W)k(γ ) = 0 for k 6= m, (HB

πσ
W)m(γ )(x̄) =


∑
x∈γ

HB
σ,xW



m

(γ )(x̄)

=

 ∑
x∈γ \{x̄}

HB
σ,xW



m

(γ )(x̄)+

 ∑
x∈{x̄}

HB
σ,xW



m

(γ )(x̄)

= (m!)1/2


 ∑
x∈γ \{x̄}

Hσ,xF


 (γ \ {x̄})ω(x̄)+ (m!)1/2F(γ \ {x̄})

×

 ∑
x∈{x̄}

HB
σ,xω


 (x̄) = (m!)1/2(Hπσ F )(γ \ {x̄})ω(x̄)

+(m!)1/2F(γ \ {x̄})(HB
σ,(n,m)ω)(x̄). (3.19)

Notice that the Bochner Laplacian in the spaceL2(Xm → ∧n(TXm); σ⊗m) leaves the
setΨ n

0 (X
m) invariant. Therefore,

(Ink H
B
πσ
W)(γ, x̄) =

{
0 for k 6= m,

(Hπσ F )(γ )ω(x̄)+ F(γ )(HB
σ,(n,m)ω)(x̄) for k = m.

(3.20)

Hence, by virtue of (2.24), we get([
Hπσ�

(
n⊕
i=1
HB
σ,(n,i)

)]
InW

)
k

(γ, x̄) = (Ink H
B
πσ
W)(γ, x̄), k = 1, . . . , n,

which proves (3.18).
2. LetΩn

0 (X
m) denote the set of all smooth formsω : Xm → ∧n(Xm) with compact

support. It is not hard to see that the essential self-adjointness ofHB
σ,m(X) for each

m = 1, . . . , n implies that

the Bochner LaplacianHB :=HB
σ⊗m,n(X

m) is essentially self-adjoint onΩn
0 (X

m).

(3.21)

Indeed, by using the decomposition (2.14), we have

L2(Xm → ∧n(TXm); σ⊗m)
= L2(Xm 3 (x1, . . . , xm) → ∧n(T(x1,...,xm)X

m); σ⊗m)
= ⊕

0≤k1,...,km≤d
k1+···+km=n

L2(Xm 3 (x1, . . . , xm)→(Tx1X)
∧k1 ∧ · · · ∧ (TxmX)∧km; σ⊗m),
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and it is enough to show that the Bochner LaplacianHB is essentially self-adjoint in
each space

L2(Xm 3 (x1, . . . , xm) → (Tx1X)
∧k1 ∧ · · · ∧ (TxmX)∧km; σ⊗m) (3.22)

on the set of smooth forms.
On the other hand, by using the essential self-adjointness of each operatorHB

σ,m(X)

onΩm
0 (X) and that of the operatorHσ in the spaceL2(X; σ) on the setD (Remark 3.2),

we conclude from the theory of operators admitting separation of variables [15, Chapter
6] that the operator

HB
σ,k1

(X)� · · ·�HB
σ,km

(X), HB
σ,0(X) := Hσ (3.23)

is essentially self-adjoint in the space

L2(X → ∧k1(TX); σ)⊗ · · · ⊗ L2(X → ∧km(TX); σ)
= L2(Xm 3 (x1, . . . , xm) → (Tx1X)

∧k1 ⊗ · · · ⊗ (TxmX)
∧km; σ⊗m) (3.24)

on the algebraic product of the domains of the operatorsHB
σ,ki
(X).

Next, we note that, for each(x1, . . . , xm) ∈ X̃m, there exists an intrinsic unitary
isomorphism

Isok1,...,km : (Tx1X)
∧k1 ⊗ · · · ⊗ (TxmX)

∧km → (Tx1X)
∧k1 ∧ · · · ∧ (TxmX)∧km

that is given by the formula

Isok1,...,km(u
(1)
1 ∧ · · · ∧ u(1)k1

)⊗ · · · ⊗ (u
(m)
1 ∧ · · · ∧ u(m)km

)

:=
√
(k1 + · · · + km)!

k1! · · · km!
u
(1)
1 ∧ · · · ∧ u(1)k1

∧ · · · ∧ u(m)1 ∧ · · · ∧ u(m)km
, u

(i)
j ∈ TxiX,

and then it is extended by linearity. As easily seen, this definition is independent of the
representation of a vector from(Tx1X)

∧k1 ⊗· · ·⊗ (TxmX)∧km . Hence, for any(k1, . . . , km),
we can construct the unitaryUk1,...,km between the spaces (3.24) and (3.22) by setting

(Uk1,...,kmF )(x1, . . . , xm) := Isok1,...,km(F (x1, . . . , xm)).

Under this unitary, the operator (3.23) goes over into the operatorHB in the space
(3.22), while the image of its domain consists of linear combinations of the form
Uk1,...,km(ω

(k1) ⊗ · · · ⊗ ω(km)), ω(ki) ∈ Ωki
0 (X). From here, the assertion (3.21) follows.

Let L̂2(Xm → ∧n(TXm); σ⊗m) denote the subspace ofL2(Xm → ∧n(TXm); σ⊗m)
consisting of all symmetric forms, i.e., the formsω ∈ L2(Xm → ∧n(TXm); σ⊗m) for
which the equality (2.15) holds forσ⊗m-a.a.(x1, . . . , xm) ∈ Xm. Evidently, the orthogonal
projectionPnm onto this subspace is given by the formula

(P nmω)(x1, . . . , xm) = 1

m!

∑
σ∈Sm

ω(xσ(1), . . . , xσ(m)), (3.25)
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and

PnmΩ
n
0 (X

m) = Ωn
0,sym(X

m), (3.26)

whereΩn
0,sym(X

m) denotes the set of symmetric smooth formsω : Xm → ∧n(Xm) with
compact support.

The assertion (3.21) and the nonnegative definiteness ofHB yield that the set(HB +
1)Ωn

0 (X
m) is dense inL2(Xm → ∧n(TXm); σ⊗m) (see, e.g., [32, Section 10.1]). Therefore,

the setPnm(H
B + 1)Ωn

0 (X
m) is dense inL̂2(Xm → ∧n(TXm); σ⊗m). But upon (3.25) and

(3.26),

Pnm(H
B + 1)Ωn

0 (X
m) = (HBPnm + Pnm)Ω

n
0 (X

m) = (HB + 1)Ωn
0,sym(X

m),

which implies that the Bochner LaplacianHB in the spacêL2(Xm → ∧n(TXm); σ⊗m) is
essentially self-adjoint onΩn

0,sym(X
m).

BecauseHB acts invariantly on the subspaceL2
σΨ

n(Xm) and also on its orthogonal com-
plement inL̂2(Xm → ∧n(TXm); σ⊗m), we conclude thatHB

σ,(n,m) is essentially self-adjoint

on Ψ n
0 (X

m). Consequently, the operator⊕n
m=1H

B
σ,(n,m) is essentially self-adjoint on the

direct sum of the setsΨ n
0 (X

m),m = 1, . . . , n.
Finally, taking to notice that the operatorHπσ is essentially self-adjoint onFC (Theorem

3.2), we conclude again from the theory of operators admitting separation of variables that
In(DΩn) is a domain of essential self-adjointness of the operatorHπσ�(⊕n

m=1H
B
σ,(n,m)) in

the spaceL2
πσ
(ΓX)⊗ [⊕n

m=1L
2
σΨ

n(Xm)]. Thus, (3.18) yields the statement. �

We give also a Fock space representation of the operatorHB
πσ

. Corollary 2.1 implies the
following:

Corollary 3.1. Let the conditions of Theorem3.4(2)be satisfied. Then,

InHB
πσ
(In)−1 = d ExpHσ�

(
n⊕

m=1
HB
σ,(n,m)

)
,

cf. Remark3.1.

3.4. de Rham Laplacian on forms over the configuration space

We define linear operators

dΓ : FΩn → FΩn+1, n ∈ N0, FΩ
0 := FC, (3.27)

by

(dΓ W)(γ ) := (n+ 1)1/2ASn+1(∇Γ W(γ )), (3.28)

where ASn+1 : (Tγ ΓX)⊗(n+1) → ∧n+1(Tγ ΓX) is the antisymmetrization operator. It
follows from this definition that

(dΓ W)(γ ) =
∑
x∈γ

(dXx W)(γ ), (3.29)
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where

(dXx W)(γ ) :=
∑

[x1,...,xn]d⊂γ
dX(Wx(γ, x)[x1,...,xn]d )

=
∑

[x1,...,xn]d⊂γ
(n+ 1)1/2 ASn+1(∇XWx(γ, x)[x1,...,xn]d ) (3.30)

with ASn+1 : TxX ⊗ (Tx1X ∧ · · · ∧ TxnX) → TxX ∧ Tx1X ∧ · · · ∧ TxnX being again
the antisymmetrization. Therefore, we have indeed the inclusiondΓ ω ∈ FΩn+1 for each
ω ∈ FΩn.

Suppose that, in local coordinates on the manifoldX, the formWx(γ, •)[x1,...,xn]d has the
representation

Oγ,x 3 y 7→ Wx(γ, y)[x1,...,xn]d = w(y) h1 ∧ · · · ∧ hn, (3.31)

wherew : Oγ,x → R andh1 ∧ · · · ∧ hn ∈ Tx1 ∧ · · · ∧ Txn . Then,

ASn+1(∇XWx(γ, x)[x1,...,xn]d ) = ∇Xw(x) ∧ h1 ∧ · · · ∧ hn, (3.32)

which, upon (3.30), describes the action ofdXx .
Let us consider nowdΓ as an operator acting from the spaceL2

πσ
Ωn into L2

πσ
Ωn+1.

Analogously to the proof of Theorem 3.3, we get the following formula for the adjoint
operatordΓ ∗

πσ
restricted toFΩn+1:

(dΓ ∗
πσ
W)(γ ) =

∑
x∈γ

(dX∗
σ,xW)(γ ), (3.33)

where

(dX∗
σ,x)W(γ ) =

∑
[x1,...,xn+1]d⊂γ :x∈{x1,...,xn+1}

dX∗
σ,x(Wx(γ, x)[x1,...,xn+1]d ). (3.34)

Suppose, analogously to the above, that in local coordinates on the manifoldX

Oγ,x 3 y 7→ Wx(γ, y)[x1,...,xn+1]d = w(y)h1 ∧ · · · ∧ hn+1, (3.35)

wherew : Oγ,x → R andh1 ∧ · · · ∧ hn+1 ∈ Tx1X ∧ · · · ∧ Txn+1X. Then,

dX∗
σ,x(Wx(γ, x)[x1,...,xn+1]d ) = −(n+ 1)−1/2

n+1∑
i=1

(−1)i−1δx,xi [〈∇Xw(x), hi〉x

+w(x)〈βσ (x), hi〉x ]h1 ∧ · · · ∧ ȟi ∧ · · · ∧ hn+1. (3.36)

Here,

δx,xi =
{

1 if x = xi,

0 otherwise,

andȟi denotes the absence ofhi .
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Upon (3.33)–(3.36),

dΓ ∗
πσ

: FΩn+1 → L2
πσ
Ωn.

Forn ∈ N, we define the pre-Dirichlet formER
πσ

by

ER
πσ
(W(1),W(2)) :=

∫
ΓX

[〈dΓW(1)(γ ), dΓ W(2)(γ )〉∧n+1(Tγ ΓX)

+〈dΓ ∗
πσ
W(1)(γ ), dΓ ∗

πσ
W(2)(γ )〉∧n−1(Tγ ΓX)

]πσ (dγ ), (3.37)

whereW(1),W(2) ∈ FΩn. Analogously to the case of Bochner, we conclude that the
function under the sign of integral in (3.37) is polynomially bounded, so that the integral
exists.

The next theorem follows from (3.28)–(3.35) and (3.36).

Theorem 3.5. For anyW(1),W(2) ∈ FΩn, we have

ER
πσ
(W(1),W(2)) =

∫
ΓX

〈HR
πσ
W(1)(γ ),W(2)〉∧n(T ΓX)πσ (dγ ).

Here,HR
πσ

= dΓ dΓ ∗
πσ

+ dΓ ∗
πσ
d is an operator in the spaceL2

πσ
Ωn with domainFΩn. It can

be represented as follows:

HR
πσ
W(γ ) =

∑
x∈γ

HR
σ,xW(γ ) = 〈HR

σ,•W(γ ), γ 〉, W ∈ FΩn, (3.38)

where

HR
σ,x = dXx d

X∗
σ,x + dX∗

σ,xd
X
x . (3.39)

From Theorem 3.5, we conclude that the pre-Dirichlet formER
πσ

is closable in the space
L2
πσ
Ωn. The generator of its closure (being actually the Friedrichs extension of the operator

HR
πσ

, for which we preserve the same notation) will be called the de Rham Laplacian onΓX

corresponding to the Poisson measureπσ . By (3.38) and (3.39),HR
πσ

is the lifting of the de
Rham Laplacian onX with measureσ .

Remark 3.6. Similarly to(3.17),the operatorHR
πσ

preserves the spaceFΩn, and we can
always takeΛ(HR

πσ
W) = Λ(W). Then, for any open boundedΛ ⊃ Λ(W), we have

(HR
πσ
W)Λ,γ = HR

σ⊗|Λ∩γ |(X
|Λ∩γ |)WΛ,γ , (3.40)

whereHB
σ⊗|Λ∩γ |(X

|Λ∩γ |) is the de Rham Laplacian of the manifoldX|Λ∩γ | with the product

measureσ⊗|Λ∩γ |.

Analogously to Theorem 3.4, we get the following theorem.
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Theorem 3.6.
1. OnDΩn we have

HR
πσ

= (In)−1
[
Hπσ�

(
n⊕

m=1
HR
σ,(n,m)

)]
In, (3.41)

whereHR
σ,(n,m) denotes the restriction of the de Rham Laplacian acting in the space

L2(Xm → ∧n(TXm); σ⊗m) to the subspaceL2
σΨ

n(Xm).
2. Suppose that, for eachm = 1, . . . , n, the de Rham LaplacianHR

σ,m(X) is essentially
self-adjoint on the set of smooth forms with compact support. Then,DΩn is a domain of
essential self-adjointness ofHR

πσ
, and the equality(3.41)holds for the closed operators

HR
πσ

andHπσ�(⊕n
m=1H

R
σ,(n,m)), where the latter operator is closed from its domain of

essential self-adjointnessIn(DΩn).

Remark 3.7. The essential self-adjointness of the de Rham LaplacianHR
σ on the set of

smooth forms with compact support is well known in the case whereσ is the volume
measure(see, e.g.,[20]). It is also sufficient to assume thatβσ , together with its derivatives
up to order3, as well as the curvature tensor of X, together with its derivatives up to order
2, are bounded(cf. Remark3.5).

Proof of Theorem 3.6.
1. Upon (3.7), (3.8), (3.27)–(3.36), (3.38) and (3.39), we get, for anyW ∈ DΩn given by

the formula (2.23),

(HR
πσ
W)k(γ )(x̄) = 0 for k 6= m,

(HR
σ,xW)m(γ )(x̄) =

{
(m!)1/2(Hσ,xF )(γ \ {x̄})ω(x̄), x ∈ γ \ {x̄},
(m!)1/2F(γ \ {x̄})(HR

σ,xω)(x̄), x ∈ {x̄}.

Hence, analogously to (3.19) and (3.20), we derive

(Ink H
R
πσ
W)(γ, x̄) =

{
0, k 6= m,

(Hπσ F )(γ )ω(x̄)+ F(γ )(HR
σ,(n,m)ω)(x̄), k = m,

which easily yields (3.41).
2. The proof is similar to that of Theorem 3.4(2). �

Again, analogously to Corollary 3.1, we get a Fock space representation of the operator
HR
πσ

.

Corollary 3.2. Let the conditions of Theorem3.6(2)be satisfied. Then,

InHR
πσ
(In)−1 = d ExpHσ�

(
n⊕

m=1
HR
σ,(n,m)

)
.
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3.5. Weitzenböck formula on the configuration space

In this section, we will derive a generalization of the Weitzenböck formula to the case of
the Poisson measure on the configuration space. In other words, we will derive a formula
which gives a relation between the Bochner and de Rham Laplacians.

Analogously to (3.7) and (3.8), we define for eachV (γ ) ∈ Tγ ΓX, γ ∈ ΓX, the annihila-
tion and creation operators

a(V (γ )) : ∧n+1(Tγ ΓX) → ∧n(Tγ ΓX), a∗(V (γ )) : ∧n(Tγ ΓX) → ∧n+1(Tγ ΓX)

as follows:

a(V (γ ))Wn+1(γ ) = (n+ 1)1/2〈V (γ ),Wn+1(γ )〉γ , Wn+1(γ ) ∈ ∧n+1(Tγ ΓX),

a∗(V (γ ))Wn(γ ) = (n+ 1)1/2V (γ ) ∧Wn(γ ), Wn(γ ) ∈ ∧n(Tγ ΓX).
Now, for a fixedγ ∈ ΓX andx ∈ γ , we define the operatorR(γ ) as follows:

R(γ ) =
∑
x∈γ

R(γ, x), D(R(γ )) := ∧n0(Tγ ΓX),

R(γ, x) :=
d∑

i,j,k,l=1

Rijkl (x)a
∗(ei)a(ej )a∗(ek)a(el).

Here,{ej }dj=1 is a fixed orthonormal basis in the spaceTxX considered as a subspace of
Tγ ΓX, and∧n0(Tγ ΓX) consists of allW(γ ) ∈ ∧n(Tγ ΓX) having only a finite number of
nonzero coordinates in the direct sum expansion (2.5).

Next, we note that

∇Γ Bπσ (γ ) = (∇X
x Bπσ (γ ))x∈γ = (∇X

x (Bπσ (γ )y))x,y∈γ
= (δx,y∇Xβσ (y))x,y∈γ ∈ (Tγ,∞ΓX)⊗2.

Hence, for anyV (γ ) ∈ Tγ,0ΓX,

∇Γ
V Bπσ (γ ) := 〈∇Γ Bπσ (γ ), V (γ )〉γ =


∑
y∈γ

δx,y〈∇Xβσ (y), V (γ )y〉y


x∈γ

= (〈∇Xβσ (x), V (γ )x〉x)x∈γ ∈ Tγ,0ΓX.
Thus,∇Γ Bπσ (γ ) determines the linear operator inTγ,0ΓX given by

Tγ,0ΓX 3 V (γ ) 7→ ∇Γ Bπσ (γ )V (γ ) := ∇Γ
V Bπσ (γ ) ∈ Tγ,0ΓX.

Analogously to (3.9), we define in∧n0(Tγ ΓX) the operator

(∇Γ Bπσ (γ ))
∧n := ∇Γ Bπσ (γ )⊗ 1 · · · ⊗ 1 + 1 ⊗ ∇Γ Bπσ (γ )⊗ 1 ⊗ · · · ⊗ 1

+ · · · + 1 ⊗ · · · ⊗ 1 ⊗ ∇Γ Bπσ (γ ).
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Theorem 3.7(Weitzenböck formula on the Poisson space).We have onFΩn

HR
πσ

= HB
πσ

+ Rπσ (γ ), (3.42)

where

Rπσ (γ ) := R(γ )− (∇Γ Bπσ (γ ))
∧n. (3.43)

Proof. Fix W ∈ FΩn andγ ∈ ΓX. Let Λ(W) ⊂ X be a compactum as in Definition
2.3 corresponding toW , and letΛ be an open set inX with compact closure such that
Λ(W) ⊂ Λ. Next, letWΛ,γ be the form onOγ,x1 × · · · × Oγ,xk , {x1, . . . , xk} = γ ∩ Λ,
defined by (2.10).

It follows from Remarks 3.4(2) and 3.6 that

Proj∧n(Tx1⊕···⊕Txk )(H
B
πσ
W(γ )) = HB

σ⊗|Λ∩γ |(X
|Λ∩γ |)WΛ,γ (x1, . . . , xk),

Proj∧n(Tx1⊕···⊕Txk )(H
R
πσ
W(γ )) = HR

σ⊗|Λ∩γ |(X
|Λ∩γ |)WΛ,γ (x1, . . . , xk),

andHB
πσ
W(γ )[y1,...,yn]d = HR

πσ
W(γ )[y1,...,yn]d = 0, [y1, . . . , yn]d ⊂ γ , if at least one

yi ∈ {y1, . . . , yn} does not belong toΛ. Now, the formulae (3.42) and (3.43) follow from
the usual Weitzenböck formulae (3.10) and (3.11) for the operatorsHB

σ⊗|Λ∩γ |(X
|Λ∩γ |) and

HR
σ⊗|Λ∩γ |(X

|Λ∩γ |). �

We will show now that the Weitzenböck correction termRπσ is a lifting of the Weitzen-
böck correction termsRσ,k of the manifoldX.

Given operator fields

X 3 x 7→ Jk(x) ∈ L(∧k(TxX)), k = 1, . . . ,min{n, d}, (3.44)

which are supposed to be uniformly bounded, we define a “diagonal” operator field

X̃m 3 x̄ 7→ Jn,m(x̄) ∈ L(T(n){x̄}X
m), m = 1, . . . , n, (3.45)

as follows. First, we define for each̄x = (x1, . . . , xm) ∈ X̃m operators

J k1,...,km
n,m (x1, . . . , xm) ∈ L((Tx1X)

∧k1 ∧ · · · ∧ (TxmX)km),
1 ≤ k1, . . . , km ≤ d, k1 + · · · + km = n,

by setting

J k1,...,km
n,m (x1, . . . , xm)u

(k1)
1 ∧ · · · ∧ u(km)m := (Jk1(x1)u

(k1)
1 ) ∧ u(k2)

2 ∧ · · · ∧ u(km)m

+u(k1)
1 ∧ (Jk2(x2)u

(k2)
2 ) ∧ · · · ∧ u(km)m + · · ·

+u(k1)
1 ∧ · · · ∧ u(km−1)

m−1 ∧ (Jkm(xm)u(km)m ),

u
(ki )
i ∈ ∧ki (TxiX), i = 1, . . . , m, (3.46)
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and extending the operatorJ k1,...,km
n,m (x1, . . . , xm) by linearity and continuity to the whole

space. Then, the operatorJn,m(x1, . . . , xm) ∈ L(T(n){x1,...,xm}X
m) is defined by setting its

diagonal blocks in the decomposition (2.16) of the spaceT(n){x1,...,xm}X
m to be J k1,...,km

n

(x1, . . . , xm) and the other blocks to be equal to zero.
Notice that, for eachν ∈ Sm, the operatorsJn,m(x1, . . . , xm) andJn,m(xν(1), . . . , xν(m))

coincide, so that (3.45) naturally determines the operator field

X̃m/Sm 3 {x̄} 7→ Jn,m({x̄}) ∈ L(T(n){x̄}X
m), m = 1, . . . , n. (3.47)

Now, we define an operator field

ΓX 3 γ 7→ J(γ ) ∈ L(∧n(Tγ ΓX)) (3.48)

settingJ(γ ) to be again the block-diagonal operator in the decomposition (2.17) with the
diagonal blocksJn,m({x̄}) and the other blocks equal to zero.

In what follows, we suppose, for simplicity, that

the curvature tensorRijkl (x)and∇Xβσ (x)are uniformly bounded inx ∈ X. (3.49)

As easily seen, for eachk ∈ N, the Weitzenböck correction termRσ,k(•) on the manifold
X is now a uniformly bounded operator field taking values in∧k(TX) (cf. (3.11)). Thus, we
can define an operator fieldRσ (γ ) through the operator fieldsRσ,k(x).

Proposition 3.1. Let (3.49)hold. Then,

Rπσ = Rσ .

Proof. The result can be easily seen directly from the definition ofRσ (γ ), R(γ ) and
Bπσ (γ ). �

4. Probabilistic representation of the Laplacians

Let ξx(t) be the Brownian motion onX with the drift βσ , the logarithmic derivative of
σ , which starts at a pointx ∈ X. We suppose the following:
• for eachx ∈ X, the processξx(t) has infinite life-time;
• the semigroup

T0(t)f (x) := Ef (ξx(t))

preserves the spaceC2
b(X) and can be extended to a strongly continuous semigroup of

contractions inL2(X; σ), and its generatorH0 is essentially self-adjoint on the spaceD
(in this caseH0 = Hσ ).

Remark 4.1. The above conditions are fulfilled if, e.g.,βσ , together with its derivatives up
to order3, is bounded.
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We denote byξγ (t) the corresponding independent infinite particle process which starts
at a pointγ ∈ ΓX,

ξγ (t) = (ξx(t))x∈γ .

As we already mentioned in Section 3.1, this process is properly associated with the Dirichlet
form Eπσ (see [8]).

Remark 4.2. The processξγ lives in general on the bigger state spaceΓ̈ consisting of all
Z+-valued Radon measures on X(the spaceΓ̈X being Polish). Notice, however, that at each
fixed moment of timet ∈ R+ the valueξγ (t) belongs toΓX a.s. Moreover, it was proven in
[34] that, in the special caseX = Rd with d ≥ 2, the processξγ lives a.s. inΓX.

Let T0(t)F (γ ) := EF(ξγ (t)) be the corresponding semigroup. As shown in [8], it can
be extended fromFC∞

b (ΓX) to a strongly continuous semigroup inL2
πσ
(ΓX) with the

generatorH0 = HΓ
πσ

.
Given operator fields (3.44) which are now supposed to be uniformly bounded, conti-

nuous, and symmetric, we define again operator fields (3.45) in the same way as in Section
3.5. We have obviouslyJn,m(x̄)∗ = Jn,m(x̄).

Let

P
Jn,m
ξx̄

(t) : T(n){x̄}X
m → T

(n)
{ξx̄ (t)}X

m, m = 1, . . . , n,

be the parallel translation along the pathξx̄(t) := (ξxi (t))i=1,...,m with the potentialJn,m.

That is,η(t) = P
Jn,m
ξx̄

(t)h satisfies the SDE

D

dt
η(t) = Jn,m(η(t)), η(0) = h, (4.1)

whereD/dt denotes the covariant differentiation along the paths of the processξ (see [20]).
It is easy to see that the symmetry of the potentialJn,m(x̄) with respect to a permutation of

the components of̄x implies the same symmetry ofP
Jn,m
ξx̄

(t). Thus, analogously to (3.47),
we get the operator field

X̃m/Sm 3 {x̄} 7→ P
Jn,m
{ξx̄ } (t). (4.2)

Now, forπσ -a.e.γ ∈ ΓX, we define the operator

PJ
ξγ
(t) : ∧n(Tγ ΓX) → ∧n(Tξγ (t)ΓX)

by setting its diagonal blocks in the decomposition (2.17) to beP
Jn,m
{ξx̄ } (t) and the other blocks

to be equal to zero.
It is known that

‖PJn,mξx̄
(t)‖ ≤ etCm, m = 1, . . . , n, (4.3)

whereCm is the supremum of the spectrum ofJn,m(x̄).
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Lemma 4.1. For πσ -a.e.γ ∈ ΓX, we have

‖PJ
ξγ
(t)‖ ≤ etC, C = max

m=1,...,n
Cm. (4.4)

Proof. The result follows directly from the definition ofPJ
ξγ
(t) and estimate (4.3). �

Let us define a semigroupTJ
n(t) acting in the space ofn-forms as follows:

TJ
n(t)W(γ ) := E(PJ

ξγ
(t))∗W(ξγ (t)), W ∈ FΩn. (4.5)

Let T Jn,m(t) be the semigroup acting in the spaceL2
σΨ

n(Xm) as

T Jn,m(t)ω(x̄) := E(P Jn,mξx̄
(t))∗ω(ξx̄(t)). (4.6)

By virtue of (4.2) and estimate (4.3), we conclude the correctness of the definition ofT Jn,m(t)

(in the sense thatT Jn,m(t) is uniquely defined) and its strong continuity. The following result
describes the structure and properties of the semigroupTJ

n(t).

Proposition 4.1.
1. TJ

n(t) satisfies the estimate

‖TJ
n(t)V (γ )‖∧n(Tγ ΓX) ≤ etC T0(t)‖V (γ )‖∧n(Tγ ΓX) (4.7)

for πσ -a.e.γ ∈ ΓX.
2. Under the isomorphismIn, TJ

n(t) takes the following form:

InmTJ
n(t) = T0(t)⊗ T Jn,m(t)I

n
m, m = 1, . . . , n. (4.8)

In particular, for 1-forms

I1TJ
1(t) = T0(t)⊗ T J1,1(t)I

1. (4.9)

3. TJ
n(t) extends to a strongly continuous semigroup inL2

πσ
Ωn.

Proof.
1. The result follows from formula (4.4).
2. For simplicity, we give the proof only in the case of 1-forms. LetV ∈ DΩ1 be given

by I1V = F ⊗ v. By the definition ofTJ
1(t) and the construction of the processξγ , we

have

TJ
1(t)V (γ )x = EF(ξγ (t) \ {ξx(t)})(P J1,1

ξx
(t))∗v(ξx(t))

= EF(ξγ (t) \ {ξx(t)})Eξx (P J1,1
ξx

(t))∗v(ξx(t))

= T0(t)F (γ \ {x})T J1 (t)v(x),
Eξx meaning the expectation with respect to the processξx(t), from where the result
follows. The general case can be proved by similar arguments.
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3. The result follows from the corresponding results for semigroupsT0(t) andT Jn,m(t),
which are well known (see [6], resp. [20]). �

Let HJ
n andHJ

n,m be the generators ofTJ
n(t) andT Jn,m(t), respectively.

Now, we will give probabilistic representations of the semigroupsT B
πσ
(t) andT R

πσ
(t)

associated with the operatorsHB
πσ

andHR
πσ

, respectively. We set

J (1)m := 0, J (2)m (x) := Rσ,m(x), m = 1, . . . ,min{n, d}

(cf. (3.11)). Let us remark thatP
J
(1)
n,m

ξx̄
(t) ≡ Pξx̄ (t) is the parallel translation of then-forms

along the pathξx̄ , and we have

HJ(1)

n,m = −HB
σ,(n,m), HJ (2)

n,m = −HR
σ,(n,m) onΨ n

0 (X
m).

Theorem 4.1.
1. For W ∈ DΩn, we have

HB
πσ
W = −HJ(1)

n W, HR
πσ
W = −HJ(2)

n W. (4.10)

2. AsL2-semigroups,

T B
πσ
(t) = TJ(1)

n (t), T R
πσ
(t) = TJ(2)

n (t). (4.11)

3. The semigroupsT B
πσ
(t) andT R

πσ
(t) satisfy the estimates

‖T B
πσ
(t)V (γ )‖γ ≤ T0(t)‖V (γ )‖γ , ‖T R

πσ
(t)V (γ )‖γ ≤ etC T0(t)‖V (γ )‖γ

for πσ -a.e.γ ∈ ΓX.

Proof.
1. It follows directly from the decomposition (4.8) that, onDΩn, we have

InmHJ
n = (H0�HJ

n,m)I
n
m, (4.12)

whereH0 is the generator ofT0(t). Setting, respectively,Jm := J
(1)
m andJm := J

(2)
m

and comparing (3.18) with (4.12), we obtain the result.
2. The statement follows from (4.10) and the essential self-adjointness ofHB

πσ
andHR

πσ
on

DΩn by applying Proposition 4.1(3) withJm = J
(1)
m andJm = J

(2)
m .

3. The result follows from (4.7) and (4.11). �
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